Overview
Iterative Retrieval improves results through multiple rounds:
- Initial query and retrieval
- Analysis of initial results
- Query refinement based on analysis
- Subsequent retrievals with refined queries
Implementation Example
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import numpy as np
class IterativeRetriever:
def __init__(self, documents):
self.documents = documents
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
self.embeddings = self.embedder.encode(documents)
self.qa = pipeline("question-answering")
def retrieve(self, query, max_iterations=3):
results = []
current_query = query
for i in range(max_iterations):
# Retrieve documents
query_embedding = self.embedder.encode(current_query)
scores = cosine_similarity(
[query_embedding],
self.embeddings
)[0]
top_indices = np.argsort(scores)[::-1][:5]
retrieved = [self.documents[i] for i in top_indices]
# Analyze results
analysis = self.qa(
question=current_query,
context=" ".join(retrieved)
)
# Store results
results.append({
'iteration': i + 1,
'query': current_query,
'documents': retrieved,
'analysis': analysis
})
# Refine query
current_query = f"{current_query} {analysis['answer']}"
return results
# Usage
documents = [...] # Your document collection
retriever = IterativeRetriever(documents)
results = retriever.retrieve("Explain RAG architecture")
When to Use
- When initial queries are incomplete or ambiguous
- For complex information needs
- When dealing with multi-faceted questions
- For improving precision through feedback loops